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In this study, the long-term behavior of cooling an initially quiescent isothermal Newtonian fluid in a
rectangular container with an infinite length by unsteady natural convection due to a fixed wall temperature has
been investigated by scaling analysis and direct numerical simulation. Two specific cases are considered. Case
1 assumes that the cooling of the fluid is caused by the imposed fixed temperature on the vertical sidewall
while the top and bottom boundaries are adiabatic. Case 2 assumes that the cooling is caused by the imposed
fixed temperature on both the vertical sidewall and the bottom boundary while the top boundary is adiabatic.
The appropriate parameters to represent the long-term behavior of the fluid cooling in the container are the
transient average fluid temperatureTastd over the whole volume of the container per unit length(i.e., the
transient area average fluid temperature, as used in the subsequent numerical simulations) at time t and the
average Nusselt number on the cooling boundary. A scaling analysis has been carried out which shows that for
both casesuastd scales ase−CsARad−1/4t, whereuastd is the dimensionless form ofTastd, t is the dimensionless
time, A is the aspect ratio of the container, Ra is the Rayleigh number, andC is a proportionality constant. A
series of direct numerical simulations with the selected values ofA, Ra, and Pr(Pr is the Prandtl number) in the
ranges of 1/3øAø3, 63106øRaø631010, and 1øPrø1000 have been carried out for both cases to
validate the developed scaling relations. It is found that these numerical results agree well with the scaling
relations. The numerical results have also been used to quantify the scaling relations and it is found thatC
=0.645 and 0.705 respectively for Cases 1 and 2 with Ra,A and Pr in the above-mentioned ranges.
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I. INTRODUCTION

Cooling/heating a body of fluid in an enclosure via natural
convection with an imposed different temperature or heat
flux on the enclosure boundary is widely encountered in na-
ture and in engineering settings, and the understanding of its
behavior is of fundamental interest and practical importance.
In the past decades, extensive experimental, numerical, and
analytical studies have been conducted on this issue, al-
though mainly on the more specific case of a rectangular
cavity with differentially heated sidewalls, such as those well
documented in Ref.[1] and in the annual literature reviews
on heat transfer(see, e.g., Ref.[2]).

The majority of the past studies have been on the short-
term behavior of the cooling/heating process, involving ei-
ther the boundary-layer formation and its evolution on the
cooling/heating wall, the traveling wave activities, the strati-
fication established in the enclosure, or the combinations of
these features. For example, Sakurai and Matsuda[3] con-
ducted a theoretical investigation into the transient process in
an already stratified fluid, revealing the core of the intricate
physics involved in the transient adjustment process of a
stratified fluid system in response to changes in thermal
boundary conditions in a vertical circular cylinder, which
was further modified and extended analytically by Jischke
and Doty[4], and numerically by Hyunet al. [5].

Patterson and Imberger[6] carried out a pioneering inves-
tigation of the transient features that occur when the tem-

peratures at the opposing two vertical side walls of a rectan-
gular cavity are impulsively heated and cooled by an equal
amount, devising a classification of the development of the
flow through several transient flow regimes to one of three
steady-state types of flow based on the relative values of Ra,
the Rayleigh number, and various combinations of Pr, the
Prandtl number, andA, the aspect ratio of cavity. This
Patterson-Imberger flow model has since occupied the center
stage of research into understanding natural convection in
cavities, and numerous investigations subsequently focused
on diverse aspects of the model. For example, the numerical
studies by Hyun[7] elucidated the flow and temperature
structures of the heat-up process of an initially homogeneous
fluid in a cylinder with a linearly heated side wall using a
finite-difference model and the effect of Pr on heatup of a
stratified fluid in an enclosure. Nicolette and Yang[8] made
a numerical and experimental investigation into two-
dimensional transient natural convection of single-phase flu-
ids inside a completely filled square enclosure with one ver-
tical wall cooled and the other three walls insulated. Otis and
Roessler[9] conducted an experimental investigation into the
development of stratification of a gas in a cylindrical enclo-
sure and provided experimental support for the existence of
internal waves and revealed several time constants that char-
acterize the process. Schladow, Patterson, and Street[10]
conducted a series of two- and three-dimensional numerical
simulations of transient flow in a side-heated cavity and their
simulations generally agree with the results of the scaling
arguments[6]. Patterson and Armfield[11] conducted de-
tailed experimental and numerical investigations into the
presence of traveling wave instabilities on the vertical-wall
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boundary layers and horizontal intrusions, the existence of a
rapid flow divergence in the region of the outflow of the
intrusions, and the presence of cavity-scale oscillations
caused by the interaction of the intrusion with the opposing
vertical boundary layer. Armfieldet al. [12] made further
in-depth studies on the wave and stability properties of the
boundary layers in the cavities. Xin and Le Quéré[13] in-
vestigated numerically chaotic natural convection in a differ-
entially heated air-filled cavity with adiabatic horizontal
walls. Brooker, Patterson, and Armfield[14] conducted a
nonparallel linear stability analysis of the vertical boundary
layer in a differentially heated cavity. Kwak, Kuwahara, and
Hyun [15] conducted a numerical study on the transient natu-
ral convective cool-down process of a fluid in a cylindrical
container, with emphasis on the flow patterns when the maxi-
mum density temperature is experienced.

More recently, the authors carried out a scaling analysis
and direct numerical simulation of the transient processes of
cooling down and stratifying an initially homogeneous fluid
by natural convection in a vertical circular cylinder and in a
rectangular container[16–18]. The results show that vigor-
ous flow activities concentrate mainly in the vertical thermal
boundary layer along the side wall and in the horizontal re-
gion which is the lower part of the domain where the cold
intrusion flow is created. The transient flow patterns at the
unsteady and quasisteady stages were analyzed, including
the activities of the traveling waves in the vertical thermal
boundary layer along the side wall, the cold intrusion move-
ments in the horizontal region, and the stratification of the
fluid. A scaling analysis was used to characterize the flow
evolution at these distinct developmental stages which was
quantified by extensive direct numerical simulations under
different flow situations in terms of Ra, Pr, andA. The scal-
ing relations were also obtained by the authors[19] for the
boundary layer development along a vertical isothermal plate
in a linearly stratified fluid with Pr.1. Oliveski, Krenzinger,
and Vielmo [20] made a numerical and an experimental
analysis of velocity and temperature fields inside a storage
tank submitted to natural convection cooling. All these stud-
ies have addressed only the short-term behavior of the
cooling/heating process, while the study of the long-term
behavior is rare, which motivates the current study.

In this study, the long-term behavior of cooling a quies-
cent isothermal Newtonian fluid in a rectangular container
with an infinite length by unsteady natural convection with a
fixed lower wall temperature is investigated by a scaling
analysis and direct numerical simulation. Specifically, the
long-term behavior of the fluid cooling due to the imposed

lower fixed temperature on the vertical side wall, with all the
remaining boundaries adiabatic; and that due to the imposed
fixed lower temperature on both the vertical side wall and the
bottom boundary, with the top boundary adiabatic is investi-
gated. In Sec. II, a scaling analysis is carried out to develop
the scaling relations to characterize the long-term behavior of
the fluid cooling, which is well represented by the transient
average fluid temperature in the container and the average
Nusselt number(s) on the cooling wall(s). In Sec. III, the
governing equations and the numerical methods as well as
the meshes used in this study are briefly introduced. The
scaling relations are then validated and quantified in Sec. IV
by a series of direct numerical simulations with the selected
values of A, Ra, and Pr in the ranges of 1/3øAø3, 6
3106øRaø631010, and 1øPrø1000. Finally, conclu-
sions are summarized in Sec. V.

II. SCALING ANALYSIS

Under consideration is the long-term behavior of cooling
a quiescent isothermal Newtonian fluid in a rectangular con-
tainer with an infinite length by unsteady natural convection
due to the imposed fixed lower wall temperature. The physi-
cal systems considered in this study are schematically de-
picted in Fig. 1. Two cases are considered. Case 1 assumes
that the cooling of the fluid is the result of the imposed fixed
wall temperatureTw on the vertical side wall while all the
remaining boundaries are adiabatic and nonslip. Case 2 as-
sumes that the cooling is due to the imposed fixed tempera-
tureTw on both the vertical side wall and the bottom bound-
ary while the top boundary is adiabatic and nonslip. For both
cases, the fluid in the container is initially at rest and at a
uniform temperatureT0 sT0.Twd. It is assumed that the con-
tainer has an infinite length and the flows are laminar so that
two-dimensional flows can be assumed and symmetry allows
only one half of the physical domain to be chosen as the
computational domain, as shown in Fig. 1(c).

The long-term behavior of the fluid cooling is well repre-
sented by the transient average fluid temperatureTastd over
the whole volume of the container per unit length(i.e., the
transient area average fluid temperature, as used in the sub-
sequent numerical simulations) at time t and the average
Nusselt number on the cooling wall. In this section, scaling
relations will be developed to characterizeTastd with the
control parameters of the flow, that is, the Rayleigh number
Ra, Prandtl number Pr, and the aspect ratioA of the rectan-
gular container, which are defined as follows,

FIG. 1. Schematic depiction of the physical
systems and the computational domain.
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Ra =
gbsT0 − TwdW3

nk
, Pr =

n

k
, A =

H

W
,

whereg is the acceleration due to gravity,b, n, andk are the
thermal expansion coefficient, kinematic viscosity, and ther-
mal diffusivity of fluid, and H and W are the height and
half-width of the container, respectively.

In this study, the investigation will focus on the flows
with 1øPrø1000, 63106øRaø631010, and 1/3øA
ø3. For such flows, it is appropriate to assume thatr, the
density of the fluid, is constant, except that appearing in the
buoyancy, andcp, the specific heat of fluid at constant pres-
sure, is also constant.

A. Case 1

In this case, as the fluid cooling is achieved by maintain-
ing a fixed temperatureTw on the vertical side wall while
keeping the top and bottom boundaries adiabatic, energy
conservation in the container requires that

rVccp
dTastd

dt
= − h̄sAsfTastd − Twg, s1d

whereVc=2HW is the volume of the fluid in the container
per unit length,As=2H is the surface area of the side wall

per unit length, andh̄s is the average heat transfer coefficient
on the side wall. The initial condition for Eq.(1) is as fol-
lows:

Tastd = T0 at t = 0. s2d

Equation(1) can also be written in the following dimen-
sionless form,

duastd
uastd + 1

= −
h̄s

rcpV0
dt, s3d

in which the dimensionless temperatureuastd and timet are
defined respectively as follows

uastd =
Tastd − T0

T0 − Tw
, t =

t

sW/V0d
, s4d

whereV0 is a characteristic velocity scale of the flow. For
unsteady natural convection flow in a cavity, it is a common
practice to useV0=kRa1/2/W, the velocity scale of the ther-
mal boundary layer thickness[6,16,18], which is also used
here. The initial condition(2) becomes

uastd = 0 att = 0. s5d

h̄s in Eq. (1) is calculated by

h̄s =
kNus

H
, s6d

in which k is the thermal conductivity of fluid, andNus is the
average Nusselt number on the side wall, which is defined as

Nus =
1

A
E

0

A S ] u

] x
D

x=1
dy, s7d

where s]u /]xdx=1 is the dimensionless temperature gradient
at the vertical side wall, andx andy are dimensionless hori-
zontal and vertical coordinates(nondimensionalized byW),
respectively. Hence, Eq.(3) becomes

duastd
uastd + 1

= −
Nus

ARa1/2dt, s8d

where the relationshipk=k/ srcpd has been used.
When t@0, numerical results show thatNusdt has the

same order astdNus, therefore, Eq.(8) can be written as

duastd
uastd + 1

= −
2C0

ARa1/2dsNustd, s9d

whereC0 is a proportionality constant.
As shown in Refs.[17,19], after the full development of

the boundary layer on the vertical side wall, the thermal
boundary layer thicknessds has the following scaling rela-
tion with RaH,

ds , RaH
−1/4, s10d

for Pr.1, where the symbol “,” denotes “scales to,” and
RaH is the Rayleigh number defined withH, that is,

RaH =
gbsT0 − TwdH3

nk
= RaA3.

Therefore,Nus should have the following scaling relation
with Ra for Pr.1:

Nus ,
1

A
E

0

A 1

ds
dy, RaH

1/4 , Ra1/4A3/4. s11d

Hence, Eq.(9) has the following solution

uastd = e−C1sARad−1/4t − 1, s12d

whereC1 is a proportionality constant.

B. Case 2

In this case, as the fluid cooling is achieved by maintain-
ing a fixed temperatureTw on both the side wall and the
bottom boundary of the container while keeping the top
boundary adiabatic, energy conservation requires that

rVccp
dTastd

dt
= − sh̄sAs + h̄bAbdfTastd − Twg, s13d

whereh̄b is the average heat transfer coefficient on the bot-
tom boundary with the surface area per unit lengthAb=2W.

It is assumed thath̄b! h̄s and the scaling relation(11) is also
valid for Nub, that is,

Nub , Ra1/4, s14d

where Nub is the average Nusselt number on the bottom
boundary, which is defined as follows
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Nub =E
0

1 S ] u

] y
D

y=0
dx, s15d

in which s]u /]ydy=0 is the dimensionless temperature gradi-
ent at the bottom boundary. Hence, Eq.(13) can be reduced
to an ordinary differential equation similar to Eq.(9) with the
same initial condition represented by Eq.(5), which has the
following scaling relation

ustd = e−C2sARad−1/4t − 1, s16d

whereC2 is another proportionality constant.

III. GOVERNING EQUATIONS AND NUMERICAL
METHOD

A. Governing equations

The two-dimensional unsteady natural convection flow in
the container is governed by the Navier-Stokes equations and
temperature equation. With the Boussinesq assumption, these
governing equations can be written in dimensionless and in-
compressible form as follows:

] u

] x
+

] v
] y

= 0, s17d

] u

] t
+

] suud
] x

+
] svud

] y
= −

] p

] x
+

Pr

Ra1/2F ]2u

] x2 +
]2u

] y2G ,

s18d

] v
] t

+
] suvd

] x
+

] svvd
] y

= −
] p

] y
+

Pr

Ra1/2F ]2v
] x2 +

]2v
] y2G + Pru,

s19d

] u

] t
+

] suud
] x

+
] svud

] y
=

1

Ra1/2F ]2u

] x2 +
]2u

] y2G . s20d

wherex, y, u, v, t, p, andu are, respectively, the nondimen-
sionalized x coordinate, y coordinate, x—velocity,
y—velocity, time, pressure, and temperature.

All the lengths, velocities, time, pressure, and temperature
in the governing equations are made dimensionless byW, V0,
W/V0, rV0

2, and sT−T0d / sT0−Twd, respectively, whereT is
the dimensional temperature.

The appropriate initial and boundary conditions are

u = v = 0, u = 0 at allx,y andt , 0;

and

u = 0,
] v
] x

= 0,
] u

] x
= 0 atx = 0, 0ø y

ø A, on the symmetry line,

u = v = 0, u = − 1 atx = 1, 0ø y ø A,

u = v = 0,
] u

] y
= 0 at 0ø x ø 1, y = 0 for Case 1,

u = v = 0, u = − 1 at 0ø x ø 1, y = 0 for Case 2,

u = v = 0,
] u

] y
= 0 at 0ø x ø 1, y = A, t ù 0.

B. Numerical method

Detailed information about the numerical algorithm and
numerical accuracy tests can be found in Refs.[16,17]. Only
a brief introduction is presented here.

Due to the large variation in length scales it is necessary
to use a mesh that concentrates points in the boundary layer
and is relatively coarse in the interior. In this study, the mesh
used for all runs of direct numerical simulations is con-
structed using a stretched grid and has 1993199 grid points,
which are distributed symmetrically with respect to the half-
width and half-height of the computational domain repre-
sented by Fig. 1(c). The nearest grid point is located 0.001
from the domain boundaries. Subsequently, the mesh ex-
pands at a fixed rate up tox=y=0.1 in bothx and y direc-
tions. After that, the mesh size expansion rate decreases at a
rate of 10% until it reaches zero, resulting in a constant
coarse mesh in the interior of the domain.

The stretching factor in thex direction is chosen to be
4.12% for all runs but some different values of the stretching
factor have been chosen for the runs withAÞ1 in the y
direction for constructing the mesh with the same 199
3199 grid points, as listed in Table I, where the vertical
stretching factors and the time steps used in all 13 runs are
presented for both cases.

The equations are discretized on a non-staggered mesh
using finite volumes, with standard second-order central dif-
ference schemes used for the viscous, pressure gradient and
divergence terms. The QUICK third-order upwind scheme is
used for the advective terms[23]. The second-order Adams-
Bashforth scheme and Crank-Nicolson scheme are used for
the time integration of the advective terms and the diffusive

TABLE I. Vertical stretching factors and time steps used in the
direct numerical simulations.

Run Ra A Pr Vertical stretching factor Time step

1 63106 1 7 1.0412 3.5310−4

2 63107 1 7 1.0412 5.5310−4

3 63108 1 7 1.0412 8.7310−4

4 63109 1 7 1.0412 1.4310−3

5 631010 1 7 1.0412 8.7310−4

6 63108 1/3 7 1.0106 1.7310−3

7 63108 1/2 7 1.0205 1.7310−3

8 63108 2 7 1.0705 4.4310−4

9 63108 3 7 1.0650 4.4310−4

10 63108 1 1 1.0412 6.1310−4

11 63108 1 50 1.0412 6.1310−4

12 63108 1 200 1.0412 3.1310−4

13 63108 1 1000 1.0412 2.4310−4
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terms, respectively. To enforce the continuity, the pressure
correction method is used to construct a Poisson’s equation
which is solved using the preconditioned GMRES method.
Detailed descriptions of these schemes were given in Ref.
[24] and the code has been widely used for the simulation of
a range of buoyancy dominated flows(see, e.g., Refs.
[11,25,26]).

IV. NUMERICAL RESULTS AND DISCUSSIONS

The purpose of the direct numerical simulations in this
study is threefold. First, the scaling relations(12) and (16)
are verified by the numerical simulation results with selected
values of Ra,A, and Pr in the ranges of 1/3øAø3, 6
3106øRaø631010, and 1øPrø1000. Second the propor-
tionality constantsC1 and C2 in the scaling relations are
quantified using these numerical results. Finally, the long-
term behavior of the averaged Nusselt numbers and the as-

sumption thath̄b! h̄s, which was made in the scaling analy-
sis, are examined using these numerical results.

The technique for verifying the scaling relations(12) and
(16) is first by examining the dependence of these scaling
relations on individual control parameters Ra,A, and Pr re-
spectively, which will be achieved by carrying out a series of
direct numerical simulations with several selected values of a
specific parameter while keeping the other control param-
eters unchanged with selected values, and then by examining
the combined dependence of the scaling relations on all con-
trol parameters, which will be achieved by combining the
three sets of individual numerical results obtained in the pre-
vious step. Specifically, direct numerical simulations with
Ra=63106, 63107, 63108, 63109, and 631010 while
keepingA=1 and Pr=7 unchanged will be carried out to
show the dependence of the scaling relations on Ra(runs
1–5); simulations withA=1/3, 1/2, 1, 2, and 3while keep-
ing Ra=63108 and Pr=7 unchanged will be carried out to
show the dependence onA (runs 3 and 6–9); and simulations
with Pr=1, 7, 50, 200, and 1000 while keeping Ra=63108

andA=1 unchanged will be used to show the dependence of
the scaling relations on Pr(runs 3 and 10–13), respectively.

As theoretically and numerically it needs an infinite time
to fully cool down the fluid in the container[that is, to reach
exactlyuastd=−1], it is necessary to terminate the numerical
simulations at some point. In this study, as a general rule, all
direct numerical simulations will be terminated whent=t f,
that is whenuast fd=−0.99.

Details of the flow structures during the stages of the
start-up and the stratification were reported in Ref.[16–18],
which will not be repeated here.

A. Case 1

Figure 2 contains the numerically obtaineduastd for all 13
runs in Case 1 to show the dependence of the scaling relation
(12) on each individual control parameter Ra,A, and Pr.
Figure 2(a) contains the raw data showing the time series of
uastd for Ra=63106, 63107, 63108, 63109, and 6
31010 with A=1 and Pr=7 unchanged. The scaling relation
(12) shows that the dependence ofuastd on Ra goes like

Ra−1/4, and the time series ofuastd with this scaling are
shown in Fig. 2(b), where it is seen that this scale brings all
five sets of data for different Ra together, indicating that
Ra−1/4 is the correct dependence ofuastd on Ra in the scaling
relation(12). Similarly, Fig. 2(c) contains the raw data show-
ing the time series ofuastd for A=1/3, 1/2, 1, 2, and 3with
Ra=63108 and Pr=7 unchanged. The scaling relation(12)
shows that the dependence ofuastd on A goes likeA−1/4, and
the time series ofuastd with this scaling are shown in Fig.
2(d), where, again, it is seen that this scale brings all five sets
of data for differentA together, indicating thatA−1/4 is the
correct dependence ofuastd on A in the scaling relation(12).
Figure 2(e) contains the raw data showing the time series of
uastd for Pr=1, 7, 50, 200, and 1000 with Ra=63108 and
A=1 unchanged. The scaling relation(12) shows that there is
no dependence ofuastd on Pr, and the overlaying of all five
sets of raw data for different Pr presented in Fig. 2(e) clearly
demonstrates this feature.

The numerically obtaineduastd is plotted against the full
scaling relationsARad−1/4t in Fig. 3(a) for all runs in Case 1.
The collapse of all sets of data onto a single curve again
confirms that the scaling relation(12) is true for Case 1. The
specific values of the proportionality constantC1 for each
run, determined by a curve-fitting method with the minimal
standard deviation(denoted assdi), are listed in Table II. It is
noted that the variation in theC1 values is of the order of
6.83%, indicating that a singleC1 value will provide a good
representation of the behavior of the flow. This general value
of C1 is found in the same fashion for all 13 sets of data by
combining them into a single average set, asC1=0.645. The
numerically obtaineduastd is plotted againste−0.645sARad−1/4t

in Fig. 3(b) for all runs in Case 1, and the standard deviation
(denotes assdt) produced by using this value ofC1 for each
individual run is also listed in Table II, which clearly shows
that this general value ofC1 gives a good quantification of
the scaling relation(12) for A, Ra, and Pr in the ranges of
1/3øAø3, 63106øRaø631010, and 1øPrø1000, that
is,

uastd = e−0.645sARad−1/4t − 1. s21d

The scaling and numerical results show that the time to
full cooling, t f as defined above, scales as

t f , sARad1/4. s22d

Using the definition given above fort f, that is the time for
uastd to reach −0.99, and the scaling relation(21), the scaled
t f is obtained for Case 1 as

t f = 7.140sARad1/4. s23d

This t f will be used below to scale the Nusselt number and to
obtain a time averaged Nusselt number.

The numerical results showing the dependence of the av-
erage Nusselt numbers on individual Ra,A, and Pr are pre-
sented in Fig. 4 for Case 1, whereNus,a is the average Nus-
selt number on the side wall overt f, that is,
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Nus,a =
1

t f
E

0

tf

Nusstddt. s24d

The time shown is scaled againstt f, while theNus shown in
(a) and(c) are scaled against Ra1/4 andA3/4, respectively. It is

apparent that the time scaling combined with the Ra andA
scalings provides a good representation of the behavior of
Nus, with all results collapsing close to single lines, in both
(a) and (c). The Prandtl number variation results, shown in
(e), again show that the Prandtl number is not an important
control parameter, as predicted. TheNus variation also shows

FIG. 2. (a) Time series of
uastd and(b) uastd plotted against
Ra–1/4t for Ra=63106 s—d, 6
3107 s¯¯d, 63108 s–––d, 6
3109 s–·–d, and 631010 s–· ·–d
with A=1 and Pr=7;(c) Time se-
ries of uastd and (d) uastd plotted
against A–1/4t for A=1/3 s—d,
1 /2 s¯¯d, 1 s–––d, 2 s–·–d, and
3 s–· ·–d with Ra=63108 and Pr
=7; (e) Time series ofuastd for
Pr=1 s—d, 7 s¯¯d, 50 s–––d,
200 s–·–d, and 1000s–· ·–d with
Ra=63108 and A=1, respec-
tively. All results are presented for
Case 1.

FIG. 3. uastd plotted against (a) sARad–1/4t and (b)
e–0.645sARad–1/4t for all simulations in Case 1. –––, Ra=63106, A
=1, Pr=7; ¯¯, Ra=63107, A=1, Pr=7; –––, Ra=63108, A
=1, Pr=7; – ––, Ra=63109, A=1, Pr=7; – · – ·–, Ra=631010,
A=1, Pr=7; – · – · –, Ra=63108, A=1, Pr=1; – · · – · ·–, Ra=6
3108, A=1, Pr=50; – – · – – · ––, Ra=63108, A=1, Pr
=200; ¯¯ (bold), Ra=63108, A=1, Pr=1000; – – –(bold), Ra
=63108, A=1/3, Pr=7; – · – ·–(bold), Ra=63108, A=1/2, Pr
=7; –· · – · ·–(bold), Ra=63108, A=2, Pr=7; –––(bold), Ra=6
3108, A=3, Pr=7.

TABLE II. Values of C1 for each run and their corresponding
standard deviations in Case 1.

Run Ra A Pr C1 sdi sdt

1 63106 1 7 0.648 0.000766 0.000767

2 63107 1 7 0.643 0.000514 0.000514

3 63108 1 7 0.643 0.000355 0.000355

4 63109 1 7 0.647 0.000260 0.000261

5 631010 1 7 0.673 0.000263 0.000294

6 63108 1/3 7 0.599 0.000357 0.000425

7 63108 1/2 7 0.622 0.000341 0.000357

8 63108 2 7 0.655 0.000519 0.000527

9 63108 3 7 0.660 0.000517 0.000530

10 63108 1 1 0.587 0.000245 0.000394

11 63108 1 50 0.654 0.000393 0.000398

12 63108 1 200 0.655 0.000392 0.000397

13 63108 1 1000 0.655 0.000249 0.000251
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a basically asymptotic behavior, as expected, with relatively
little variation over the last 60% of the development time.
The time averaged results, shown in(b), (d), and(f), further
confirm theNus scaling, showing very close to linear rela-
tions to Ra1/4 andA3/4, and little variation with Pr.

It should be noted that the experimental results of Berk-
ovsky and Polevikov[21] and the numerical results of Cat-
ton, Ayyaswamy, and Clever[22] show thatNus,a has the
following empirical dependence on both Ra and Pr for
2,A,10, Pr,105, and Ra,1010,

Nus,a = 0.22A−1/4S RaPr

0.2 + Pr
D0.28

. s25d

This relation clearly shows that the Pr dependence ofNus,a is
only significant for Pr,1. When Pr is large, the dependence
of Nus,a on Pr is negligible. The numerical results shown in
Fig. 4(f) qualitatively show this feature. On the other hand,
the scaling relation(11), which shows no dependence ofNus
on Pr, was developed with the assumption of Pr being larger
than 1. When Pr,1, such a scaling relation is not valid. It is
expected that this will also be true for Case 2.

B. Case 2

The direct numerical simulation results for Case 2 are
presented in Fig. 5 to show the individual dependence of the

scaling relation(16) on Ra,A, and Pr, respectively. The col-
lapse of all five sets of numerically obtaineduastd onto a
single curve in each of Figs. 5(b), 5(d), and 5(e) clearly
shows that the dependence of the scaling relation(16) on
each of the control parameters Ra,A, and Pr is true for Case
2, similar to that for Case 1.

The numerically obtaineduastd is plotted against
sARad−1/4t in Fig. 6(a) for all runs in Case 2. The collapse of
all sets of data onto a single curve confirms again that the
scaling relation(16) is true for Case 2. The specific values of
the proportional constantC2 for each run, determined by the
curve-fitting method with the minimal standard deviationsdi,
are listed in Table III. Once again a best fit singleC2 can be
obtained for all the data, as described above, given for Case
2, C2=0.705. All the data sets are plotted, using thisC2, in
Fig. 6(b), while the standard deviation for each data set is
shown in Table III assdt. The scaling relation(16) is there-
fore well approximated by the following general equation for
A, Ra and Pr in the ranges of 1/3øAø3, 63106øRaø6
31010, and 1øPrø1000,

uastd = e−0.705sARad−1/4t − 1. s26d

Using the definition given above fort f and the scaling
relation (26), the scaledt f is obtained for Case 2 as

FIG. 4. (a) NusstdRa–1/4 plot-
ted againstt /t f and(b) Nus,a plot-
ted against Ra1/4 for Ra=6
3106 s––d, 63107 s¯¯d, 6
3108 s–––d, 63109 s–·–d, and
631010 (–· · –d with A=1 and Pr
=7; (c) NusstdA–3/4 plotted against
t /t f and (d) Nus,a plotted against
A3/4 for A=1/3 s—d, 1 /2 s¯¯d,
1 (– – –), 2 (-·-), and 3(–· ·–) with
Ra=63108 and Pr=7;(e) Nusstd
plotted againstt /t f and sfdNus,a

plotted against Pr for Pr=1(––), 7
(····), 50(– – –), 200(-·-), and 1000
(–· ·–) with Ra=63108 andA=1,
respectively. All results are pre-
sented for in Case 1.
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t f = 6.532sARad1/4. s27d

This t f will be used below to scale the Nusselt number and to
obtain a time averaged Nusselt number.

The numerical results showing the dependence of the av-
erage Nusselt numbers on Ra,A and Pr are presented in Figs.
7–9 for Case 2 respectively, whereNub,a is the average Nus-
selt number on the bottom boundary overt f andNut,a is the
average Nusselt number on all boundaries, that is,

FIG. 5. (a) Time series ofuat
and (b) uastd plotted against
Ra–1/4t for Ra=63106 s—d, 6
3107 s¯¯d, 63108 s– – –d, 6
3109 s–·–d, and 631010 s–· ·–d
with A=1 and Pr=7;(c) Time se-
ries of uastd and (d) uastd plotted
against A–1/4t for A=1/3 (––),
1 /2 s¯¯d, 1 s– – –d, 2 s–·–d,
and 3s–· ·–d with Ra=63108 and
Pr=7; (e) Time series ofuastd for
Pr=1 s—d, 7 (… …), 50 s– – –d,
200 s–· –d, and 1000s–· ·–d with
Ra=63108 and A=1, respec-
tively. All results are presented for
Case 2.

FIG. 6. uastd plotted against (a) sARad–1/4t and (b)
e–0.705sARad–1/4t for all simulations in Case 2. ––, Ra=63108, A=1,
Pr=7; ¯¯, Ra=63107, A=1, Pr=7; ----, Ra=63108, A=1, Pr
=7; – – –, Ra=63109, A=1, Pr=7; –· – ·–, Ra=631010, A=1,
Pr=7; –· – ·–, Ra=63108, A=1, Pr=1; – · · – · ·–, Ra=63108, A
=1, Pr=50; – – · – – · ––, Ra=63108, A=1, Pr=200;¯¯ (bold),
Ra=63108 A=1, Pr=1000; – – ––(bold), Ra=63108, A=1/3,
Pr=7; – · – ·–(bold), Ra=63108 A=1/2, Pr=7; – · · – · ·–(bold),
Ra=63108, A=2, Pr=7;—(bold), Ra=63108, A=3, Pr=7.

TABLE III. Values of C2 for each run and their corresponding
standard deviations in Case 2.

Run Ra A Pr C2 sdi sdt

1 63106 1 7 0.771 0.001275 0.001379

2 63107 1 7 0.724 0.00806 0.000815

3 63108 1 7 0.697 0.000525 0.000527

4 63109 1 7 0.685 0.000352 0.000360

5 631010 1 7 0.704 0.000363 0.000363

6 63108 1/3 7 0.798 0.000652 0.000814

7 63108 1/2 7 0.740 0.000590 0.000616

8 63108 2 7 0.681 0.000669 0.000687

9 63108 3 7 0.679 0.000631 0.000652

10 63108 1 1 0.670 0.000486 0.000516

11 63108 1 50 0.703 0.000537 0.000537

12 63108 1 200 0.706 0.000541 0.000541

13 63108 1 1000 0.706 0.000344 0.000344
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Nub,a =
1

t f
E

0

tf

Nubstddt, s28d

and

Nut,a = Nub,a + Nus,a. s29d

The time shown is scaled againstt f, while theNus shown in
Fig. 7(a) andNub shown in Fig. 7(b) are scaled against Ra1/4,
and theNub shown in Fig. 8(a) is scaled againstA3/4, respec-

tively. It is apparent that the time scaling combined with the
Ra andA scalings provides a good representation of the be-
havior of Nus for Case 2, with all results collapsing close to
single lines, in both Figs. 7(a) and 8(a). The time scaling
combined with the Ra andA scalings provides less satisfac-
tory representation of the behavior ofNub, with some varia-
tions seen in the results shown in both Figs. 7(b) and 8(b).
The time averaged results, shown in Figs. 7(c) and 8(c), fur-
ther confirm theNus scalings, showing very close to linear
relations to Ra1/4 andA3/4. The results forNub,a show a linear

FIG. 7. (a) NusstdRa–1/4 and(b) NubstdRa–1/4

plotted against t /t f for Ra=63106 s—d, 6
3107 s¯¯d, 63108 s–––d, 63109 s–·–d, and
631010 s–· ·–d, (c) Nus,a andNut,a and(d) Nub,a

plotted against Ra1/4 with A=1 and Pr=7 in Case
2. s and n in (c) are numerical data forNus,a

andNut,a, and –– and̄ ¯ are their correspond-
ing linear fit curves, respectively.

FIG. 8. (a) NusstdA–3/4 and(b) Nubstd plotted
againstt /t f for A=1/3s––d, 1 /2s¯¯d, 1s–––d,
2s–·–d, and 3s–· ·–d, (c) Nus,a and Nut,a plotted
againstA3/4 and (d) Nub,a plotted againstA with
Ra=63108 and Pr=7 in Case 2.s andn in (c)
are numerical data forNus,a and Nut,a, and ––
and¯¯ are their corresponding linear fit curves,
respectively.
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relation with Ra1/4, as shown in Fig. 7(d), however theA
scaling, shown in Fig. 8(d), shows some nonlinear behavior
for low A. The Nut,a results show linear relation with Ra1/4

and A3/4. The numerical results showing the dependence of
the average Nusselt numbers on Pr for Case 2, as presented
in Fig. 9, clearly show that there is relatively little depen-
dence on Pr for the long-term behavior ofNus, Nus,a, and
Nut,a, again consistent with the assumption about the average
heat transfer coefficient on the side wall. TheNub andNu,a
relations are less satisfactory, showing some Pr dependence
in the heat transfer on the bottom boundary.

The percentage of heat transferred through the bottom
boundary overt f, fb, is defined as

fb =

E
0

tf

h̄bAbdt

E
0

tf

h̄bAbdt +E
0

tf

h̄sAsdt

, s30d

which can also be expressed as follows

fb =
Nub,a

Nub,a + Nus,a

. s31d

The numerically obtainedfb is presented in Table IV for all

runs in Case 2, clearly showing that the assumptionh̄b! h̄s
which was made in the scaling analysis is true.

It is clear that the heat transfer occurs primarily on the
side walls and will be associated with the convective bound-
ary layer that forms there. The flow velocity adjacent to the
bottom boundary will be relatively small, particularly during

the later stages of cooling, and the heat transfer in that region
will be considerably less than that on the side wall.

V. CONCLUDING REMARKS

Scaling analysis has been used to obtain time scales for
the long-term behavior of the cooling of a fluid in a rectan-
gular container with an infinite length via the side walls and
the side wall and bottom. The scaling relations have been
validated by comparison to numerical simulation. The nu-
merical results have also been used to obtain the proportion-
ality constants in the scaling relations, allowing the time re-

FIG. 9. (a) Nusstd and (b) Nubstd plotted
against t /t f for Pr=1s––d, 7s¯¯d, 50s–––d,
200 s–·–d, and 1000s–· ·–d (c) Nus,a and Nut,a

and (d) Nub,a plotted against Pr with Ra=6
3108 andA=1 in Case 2.

TABLE IV. Numerical results offb for all simulations in Case
2.

Run Ra A Pr fb s%d

1 63106 1 7 9.86

2 63107 1 7 6.55

3 63108 1 7 4.20

4 63109 1 7 2.90

5 631010 1 7 2.10

6 63108 1/3 7 6.77

7 63108 1/2 7 5.38

8 63108 2 7 3.39

9 63108 3 7 3.50

10 63108 1 1 7.02

11 63108 1 50 3.64

12 63108 1 200 3.90

13 63108 1 1000 4.24
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quired for cooling to any required degree to be accurately
determined.

Using 99% as the cool down criterion the scaled nondi-
mensional cool down time for the side cooled cavity is
7.140sARad1/4, and for the side and bottom cooled cavity is
6.532sARad1/4. It has been shown that for Case 1, side wall
cooling only, the scaling relations correspond very well to
the behavior of the numerical results, confirming the ap-
proximations used to obtain those relations. The results for
Case 2 also show that the scaling relations provide a very
good prediction of the overall cooling down rate, represented
asuastd. The form of theuastd scaling relation for Case 2 is
the same as that for Case 1, with only a variation in the
proportionality constant, as noted above. This again confirms
that the assumptions made in obtaining the scaling relations
are correct, and that additionally cooling the bottom has little
effect on the overall cooling rate. The relative behavior of the
bottom and side wall cooling has been further investigated
by obtainingNus andNub separately, and comparing them to
their scaling relations.Nus is seen to correspond very well to
the scaling relation, while theNub correspondence is seen to
be less satisfactory, with some Pr dependence observed as
well as some variations observed in the scaled results. This
may be, at least in part, attributed to the variation in the
nature of the heat transfer within the fluid adjacent to the
bottom boundary. In the early stages of the flow an intrusion
travels from the wall across the container bottom, and during
that stage theNub heat transfer is relatively large, as seen in
Figs. 7(b), 8(b), and 9(b), however during the later stages of

cooling the flow adjacent to the bottom is near to quiescent
and the predominant mode of heat transfer within the fluid in
that region is conduction. The observation thatNub has some
Pr dependence supports this hypothesis, however the scaling
relations do not represent this change in flow type, or the
weak Pr dependence.

Despite this, the overall heat transfer rate for Case 2 is
well represented by the scaling relations, as seen in theNut,a
results, and this is at least in part because this is dominated
by Nus,a. The side wall heat transfer is predominantly a result
of the natural convection boundary layer which forms there,
maintaining a high-temperature gradient throughout the cool-
ing process. The overall heat transfer and cooling process for
Case 2 is therefore dominated by the side wall heat transfer,
and as a result, for both Case 1 and 2 the cooling rate and
total heat transfer are well represented by the scaling rela-
tions presented above.
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